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Introduction and motivation Mechanism reduction strategies
= Laminar flames occur in many lab scale processes in Genetic algorithm: Search results
combustion science and for nanoparticle synthesis - Reactions are mapped onto the genome = Mechanism could be reduced from 325 to 60 reactions
= Mass spectroscopy and laser based measurement techniques - Homogenous reactor model chosen for evaluation = Maximum error not determined by a strict value
are widely used todprowde spatla:cl.lyléesolved SPECIES - Accuracy criteria are temperature, ignition delay time and mole = Search converged after 405 generations
concentrations and temperature fields : - . .
perature | | fractions of selected species = Growth of the problem depends weakly on mechanism size
" The knowledge of the flow field is essential for analysis and - Cost criteria are CPU time and the size of the mechanism
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" Inorderto obtain accurate temperature and VeIOCIty field of the \rl]vzlis gg roe\;ecrt?onesr.ror 0 o Fig. 4: Performance of the reduced GRI 3.0 for a homogeneous constant-pressure reactor

reacting gas, a two-dimensional laminar flame was simulated in and a burner-stabilized flame using the conditions from [5]
OpenFOAM [2].

= The reduced mechanism used here cannot predict a correct

distribution of species concentration, therefore the simulated Simulation of mass s pectroscopy measurements

temperature fields from OpenFOAM were used to reconstruct

the species _concentratlon thr_ough one-dlmensmr_lal flame Experimental configuration yan .

simulations in Cantera [3] using GRI 3.0 mechanism [4]. . Sampling probe is an axisymmetric quartz \ - 1600

1200

= Complementary CFD simulation of the laminar flame is cone with coggﬂ?;i%a?fggaain -

necessary to reconstruct accurate experimental conditions for - Orifice diameter- 0.08mm. lenath: 20 L200

making the measurement a more reliable source for model - e  1engin. -

verification.

burner surface

= |nner angle: 40°, outer angle: 51°

= Premixed laminar flame composition:
CH,/O,/Ar (mole fractions: 0.06/0.15/0.79)

= Flow rate: 15 sccm

Reaction mechanism reduction = Unburned gas temperature: 368 K,

pressure: 1 atm

= An efficient reduction approach is based on genetic algorithms
to find a relatively small subset of reactlo,ns from the detailed | | Fig. 7: Streamlines and temperature field at different probe
mechanism, taking into account the user’s demands for Simulation Results Fig. 5: Sketch of the experimental geometry and the positions (0.32 mm and 0.49 mm), [6]
accuracy and cost.

. L . ional domain [6, 7
= Perturbation due to this invasive probing romputationat domain 6. 7]

= Genetic algorithm (GA) is a stochastic search method that mimic technique is significant. A —— PE——— 2000
natural biological evolution and it is used for problems that do _ _ _ 010 Ny o O -
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= Accuracy of the reduced mechanism is determined by * Anearly perfect agreement was found in e ol /S 1200 3
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: TP : : . . Fig. 6: Temperature field for a probe tip position Fig. 8: Mole fractions of CH4 and H20O, measured (symbols), calculated
= Elements of the algorlthm (|n|t|aI|zat|on, crossover, mutation, agreement with the expe”ment' at 1.06 mm [6] for the undisturbed flame and calculated for the CFD flame
selection) can be adapted to the problem reconstruction [6, 7]

= Algorithm runs in parallel

Simulation of nanoparticle synthesis from a premixed laminar flame

CFD “reconstruction” of a reactor flow

= CFD model assumed rotational symmetry and negligible
buoyancy

= CFD calculations with and without Fe(CO). correspond

References well to experimental observations [8]

= Simulations were performed with the reduced
mechanism [9]
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