

Center for Computational Sciences and Simulation

UNIVERSITÄT DUISBURG ESSEN

Magnetic Friction of Vortices

M.P. Magiera and D.E. Wolf, Faculty of Physics

Motivation

- Development of a model for energy dissipation in a purely magnetically interacting system
- A magnetic dipole is moved parallel to a magnetic material, analagous to the scanning tip of a magnetic force microscope or the reading head of a hard disk
- Tip induces magnons in the substrate [1,2]
- Vortex structures feel a strong friction force

 $-\alpha \mathbf{S}_i \times (\mathbf{S}_i \times \mathbf{h}_i)$

 $-\mathbf{S}_i \times \mathbf{h}_i$

Atomistic model

- Single atoms are modeled by normalized magnetic moments ("spins" $\mathbf{S}_i = \boldsymbol{\mu}_i/\mu_s$) on a grid $L_x \times L_y$ with lattice constant a
- Substrate spins undergo ferromagnetic exchange interaction J>0 and anisotropy with constant $d_z<0$ (easy plane)

$$\mathcal{H}_{\text{sub}} = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - d_{\mathbf{z}} \sum_i S_{i,\mathbf{z}}^2$$

Substrate spins interact with tip by dipole-dipole interaction

$$\mathcal{H}_{\text{tip}} = -w \sum_{i} \frac{3(\mathbf{S}_{i} \cdot \mathbf{e}_{i,\text{tip}})(\mathbf{S}_{\text{tip}} \cdot \mathbf{e}_{i,\text{tip}}) - \mathbf{S}_{i} \cdot \mathbf{S}_{\text{tip}}}{r_{i,\text{tip}}^{3}}$$

with saturation magnetization μ_s , the phenomenological damping constant α , the gyromagnetic ratio γ

Local field is coupled to a heat bath:

$$\mathbf{h}_{i} = -\frac{\partial \mathcal{H}}{\partial \mathbf{S}_{i}} + \boldsymbol{\zeta}_{i}(t) \, \text{with mean} \, \langle \boldsymbol{\zeta}_{i}(t) \rangle = 0 \, \text{and correlator} \, \left\langle \zeta_{i}^{\kappa}(t) \zeta_{j}^{\lambda}(t') \right\rangle = 2 \frac{\alpha \mu_{s} k_{B} T}{\gamma} \delta_{i,j} \delta_{\kappa,\lambda}(t-t')$$

- Lattice vorticity $q_i = \frac{1}{2\pi} \sum_{\circlearrowleft_i} \Delta \phi$

with $q_i \in \mathbb{Z}$, $Q = \sum |q_i|$

Parallelization Absence of long-range interactions yields efficient domain decomposition (DDC) The parallel use of random numbers (RNS) leads to a superlinear scaling 16384 superlinear scaling $SU \sim 1.6 p$ 4096 1024 S dnpa 256 linear scaling 64 ∞ 16 RNS @ CRAY XT5 DDC @ JUGENE • RNS @ JUGENE + RNS @ JUROPA • Nr. of CPUs (Cores) p

References

[1] M.P. Magiera, L. Brendel, D.E. Wolf and U. Nowak, Europhys. Lett. 87, 26002 (2009)

[2] M.P. Magiera, L. Brendel, D.E. Wolf and U. Nowak, *Europhys. Lett.* **95**, 17010 (2011)

[3] L.D. Landau and E.M. Lifshitz, *Phys. Z. Sowjetunion* **8**, 153 (1935)

[4] T.L. Gilbert, *IEEE Trans. Magn.* **40**, 3443 (2004)

[5] D. L. Huber, *Phys. Rev. B* **26**, 3758 (1982)

[6] M.P. Magiera, S. Angst, A. Hucht and D.E. Wolf, *Phys. Rev. B* **84**, 212301 (2011)

[7] M.P. Magiera, A. Hucht, H. Hinrichsen, S.R. Dahmen and D.E. Wolf, Europhys. Lett. 100, 27004 (2012)

[8] M.P. Magiera, submitted

Ground states at v = 0

Collinear State

Vortex State

Iffen im Denken

 Energy of the ground states can be calculated on a lattice for the FM or in a continuum model for the vortex state:

$$E_{\text{CS}}^{\text{sub}} = 0.2w^2$$

$$E_{\rm CS}^{\rm tip} = -0.39w^2$$

$$E_{\text{VS}}^{\text{sub}} = \pi \log R/a + 1.88$$
$$E_{\text{VS}}^{\text{tip}} = -3.5w$$

• In the static limit, magnetization and vorticity are

$$m_{\rm CS} \approx 1$$

$$m_{\rm CS} \approx 1$$
 $Q_{\rm CS} = 0$

$$m_{\rm VS} \approx 0$$

$$Q_{\rm VS} = 1$$

States observed for v > 0 and T = 0

- Pure **VS** or **CS** (system always adopts one of them)
- Both, **VS & CS**, are stable
- None of them is stable, we get a periodical switching (**PS**) with time dependent Q=Q(t)
- State with a vortex and an antivortex (VAVS), which is bound by the vortex, and which corresponds to Q=2
- Moving the tip may generate or annihilate vortices
- NESSs stable against strong disturbance, e.g. provided by domain walls [7]

Periodic state

(a) VS is present, Q=1

(b) Vortex released from tip

(c) CS is present, Q=0

(d) Vortex-Antivortex pair nucleated, Q=2

(e) Antivortex released from vortex

(f) Vortex is present -> (a)

Friction force

- The NESS has a large impact on the friction force the tip "feels"
- Friction of the **VS** [5,8]:

with the tip

dissipate energy

• Friction of the **FM** much weaker, because this structure is not interacting attractively

 $F = \alpha v \pi \log L/L_0$

• The **PS** shows a friction force between the FM and the **VS**, although here more vortices may be present: but a vortex at rest, detached from the tip, does not

