VSJF, 2016-11-19

Peak Car Panel

Smarter, cleaner, fewer? Demand shifts and technological innovation from the carmakers' perspective

Dr. Roman Bartnik
IN-EAST School of Advanced Studies
University of Duisburg-Essen

Our three presentations focus on different facets of the Peak Car discussion

Peak car (Japan)? Different interpretations

INDUSTRY

- —...peak of car assembly in Japan?
- ...decline of Japanese carmakes?

TECHNOLOGY

- -... decline of the internal combustion engine car?
- -...the end of carmaker dominance of value chains?

BUSINESS MODEL

—...disruptive innovation of the automotive industry business model towards service?

Key questions

What are sources of (in)stability in the automotive industry?

Who will collect the spoils of upcoming innovations in the industry?

Central concerns: Disruptive innovation and hollowing out

JAPANESE AUTOMOTIVE INDUSTRY DYNAMICS

Industry view: Peak car (Japan)?

- Declining revenue & profit (after record fiscal year 2016)
 - Yen appreciation
 - Shrinking domestic market...
- Peak for Japanese carmakers?
 - Unlikely for large firms such as Toyota, Nissan who benefit from incumbent advantages and international value chains
 - Likely for small players such as Mazda, Suzuki, Subaru who might lack scale to sustain necessary R&D investments (emission/drive-train diversity, safety/automation)
- Peak for domestic production?
 - Further decline very likely, increased focus on emerging markets
 - Counter-pressures:
 - Political commitments to keep production in Japan (Toyota: 3 Mio., Nissan: 1 Mio.)
 - Mother-plant model, dependence on stable local supply base

Two distinctions are central to the discussion

Integral / Modular product architectures

Disruptive / Sustainable innovation

Emission and safety/automation requirements increase the competition by

functionality Safety **Emission** features regulations

DISRUPTIVE INNOVATION AHEAD?

Definition

Disruptive innovations originate in low-end or new-market footholds

Disruptive innovation #1: "Low-end footholds"

"Low-end footholds exist because incumbents
... pay less attention to less-demanding
customers. In fact, incumbents' offerings often
overshoot the performance requirements of
the latter. This opens the door to a disrupter
focused (at first) on providing those low-end
customers with a "good enough" product."

Disruptive innovation #2: "New market footholds"

 "In the case of new-market footholds, disrupters create a market where none existed. Put simply, they find a way to turn nonconsumers into consumers."

What innovation is "disruptive"?

Source: Christensen, Clayton (2015): What is disruptive innovation? Harvard Business Review, December 2015.

Successful, but not a "disruptive innovation" #1

Successful, but not a "disruptive innovation" #2

PEAK CAR(MAKER)?

From WINTEL to 'Google Inside'?

Modularity in the Computer Industry

- Close mapping of part to function
- Open, standard interfaces

Modularization in the automotive industry – substantial need for systems integration remains

- Modules as used in the Automotive industry are not really 'modular', the Computer industry metaphor does not hold
 - No direct mapping of part to function
 - Substantial inter-component interdependencies
 - Often proprietary designs belonging to or customized for carmakers
 - Substantial systems integration required

Realizing the risk: The automotive industry has shifted from the liberal outsourcing of key subassemblies towards a more careful approach and

knowledge duplication

tn<mark>crease in</mark> outsourcing and modularization

Coalition suporting M+O develops at **OEMs** and suppliers

Framing rethought as carmakers realize the risks

Enthusiasm build for M/O Pursuit with M+O activities. Difficulties with M encountered

Modification or abandonment of M; persistence of O

Carmakers regaining

control, keeping

value-add

Up to mid 1990s

Mid- 1990s onwards

Early 2000s onwards

Mid 2000s to present

Note: M+O = Modularization and Outsourcing

Source: Jacobides, MacDuffie, Tae (2016), Agency, Structure, and the Dominance of OEMs: Change and Stability, Strategic

Management Journal, 37:9, 2016, p. 1942–1967.

Some examples of alternative approaches to the original modularization idea

Example Toyota:

- Achieve access to supplier specialization advantages by close collaborative design
- Retain close quasi-hierarchical control
- Retain closed, proprietary standards

Example Hyundai:

- Some, but limited modularization
- Quasi-hierarchical control over key supplier Mobis

Example VW:

- MQB platform approach, sharing core assemblies across multiple carlines
- Main gain from economies of scale, restricting design engineer parameters
- Proprietary (closed) design

Incumbent carmakers react to increasing risks of modularization and new technologies. They have substantial advantages in this struggle

- Proprietary designs and IPR
- Certification and legal accountability
- Link with final customers
- Access to distribution
- Substantial funds
- Strong knowledge of integral manufacturing

'Modularity' in the automotive industry

- Started with sub-assemblies (soon termed 'modules') in manufacturing
- Outsourcing of sub-assemblies started in the 1990s, including quality testing
- Bolstered by the popularity of the 'core competence' model (Prahalad & Hamel 1990)
- Scope increased to sub-assembly design in the mid-1990s
- Carmakers pushed for creation of mega-suppliers that could act as full-service suppliers to take over purchasing, design, production of sub-assemblies
- In early 2000s: problems with quality and supplier coordination emerged, led carmakers to re-establish control over designs and reversed the hope for a hands-off delegation of tasks
- Modularity now largely interpreted as outsourcing of subassembly with substantial systems integration by the carmaker

- 'Real' modularization with open standard interfaces tried out in the 1990s, now largely abandoned
- Carmakers retain substantial quasi-hierarchical control despite (?) outsourcing
- Japanese carmakers have reaped some of the expected benefits of modularization without it in their close relational supplier collaboration in R&D and part design

What drives carmakers' structural dominance?

Source: Jacobides, MacDuffie, Tae (2016), Agency, Structure, and the Dominance of OEMs: Change and Stability, Strategic Management Journal, 37:9, 2016, p. 1942–1967.

ZOOMING OUT: SOURCES OF STABILITY IN THE AUTOMOTIVE INDUSTRY

What makes cars a special product? Safety and high expectations result in extreme complexity

Cars are heavy, fast-moving objects operated by individuals in the public space High consumer expectations for styling, power, handling, reliability, and amenities. 2,000 components, 30,000 parts, and 10 million lines of software code.

1880s to 2010s:

What explains the recent surprising stability of the automotive industry?

The automotive industry moved towards highly integrated architecture – quite unlike the Computer Industry

1 Sequences of Automobile and Computer Industries

Integral and modular architectures follow different approaches to achieve competitive advantage

Functionality-driven competition reigns in the current (and likely: future) automotive industry

Source: Fujimoto, Takahiro (2014): The Long Tail of the Auto Industry Life Cycle. Journal of Product Innovation Management, 2014;31(1):8–16. DOI: 10.1111/jpim.12076

In sum: Confusion of terms increase the sense of automotive peak/crisis, substantial barriers of entry remain

- Disruptive innovation not really 'disruptive'
- So called modularity not really modular
- Systems integration remains the key competitive advantage of carmakers
- Given the industry environment, this is a very strong barrier of entry and remains a substantial advantage for incumbents

Outlook: 'Reign of the dinosaurs' continues

=Continuity of substantial incumbent advantage in the automotive industry

Source: MacDuffie, John Paul & Fujimoto, Takahiro (2010): Why Dinosaurs Will Keep Ruling the Auto Industry. Harvard Business Review, June 2010.

Peak car? Some tentative conclusions

- ...peak of car assembly in Japan? Very likely, already passed
- ...decline of Japanese carmakers? Unlikely for large incumbents, given substantial incumbent advantages. Consolidation likely due to increased R&D requirements (emissions, safety/automation...)
- ... decline of the internal combustion engine? Certainly, though hybrids will likely dominate for the next decades
- ...the end of carmaker dominance of value chain? Unlikely in the near future given sustained integral architecture and strong carmaker advantages (prorietary designs etc.).
- ...disruptive innovation of the automotive industry business model towards service? No disruptive innovation, instead increasing hybridization between production & service niches. Incumbents strongly invested in capturing emerging business models

Thank you for your attention.

Do not hesitate to contact me for any questions.

Dr. Roman Bartnik
IN-EAST School of Advanced Studies
University of Duisburg-Essen
roman.bartnik@uni-due.de

Mobil: +49-1575-474-2789

Bartnik - 2016

11.01.17 F 38